
Generation and Counting

Brendan McKay

Australian National University

and various colleagues to be mentioned or not...

graph generation 1

Exhaustive generation

Lots of people want to generate exhaustive lists of

combinatorial objects.

Tens of thousands of examples are published, involving many fields of

science.

Usually, but not always, there is a concept of equivalent objects,

and it is desired to obtain only one member of each equivalence class.

We will focus on graphs.

In 1974 it took 6 hours to generate all of the 274,668 graphs on 9

vertices (Baker, Dewdeny, Szilard). Now it takes 0.1 seconds.

graph generation 2

Exhaustive generation

Lots of people want to generate exhaustive lists of

combinatorial objects.

Tens of thousands of examples are published, involving many fields of

science.

Usually, but not always, there is a concept of equivalent objects,

and it is desired to obtain only one member of each equivalence class.

We will focus on graphs.

In 1974 it took 6 hours to generate all of the 274,668 graphs on 9

vertices (Baker, Dewdeny, Szilard). Now it takes 0.1 seconds.

It is practical to generate all 50,502,031,367,952 graphs on 13 ver-

tices and plausible to generate all 29,054,155,657,235,488 graphs on

14 vertices.

graph generation 2

Recursive generation

A recursive construction of a class of graphs consists of

1. a set of irreducible graphs in the class, and

2. a set of expansions that can be performed on graphs in the class,

such that each graph in the class can be constructed from an irreducible

graph via a sequence of expansions while staying within the class.

The reverse of an expansion is a reduction.

graph generation 3

Recursive generation

A recursive construction of a class of graphs consists of

1. a set of irreducible graphs in the class, and

2. a set of expansions that can be performed on graphs in the class,

such that each graph in the class can be constructed from an irreducible

graph via a sequence of expansions while staying within the class.

The reverse of an expansion is a reduction.

Example: 3-connected planar cubic graphs

face

graph generation 3

Example: 3-connected planar cubic graphs without triangles

The following generation method is a slight improvement on one

discovered by Batagelj (1989).

> 5

graph generation 4

Isomorph-free generation

Once we have a recursive characterization, we can generate the graphs

in the class, but how to we eliminate isomorphic copies?

graph generation 5

Isomorph-free generation

Once we have a recursive characterization, we can generate the graphs

in the class, but how to we eliminate isomorphic copies?

Toy Example: triangle-free planar graphs

graph generation 5

Obvious recursive construction: add one vertex at a time starting with

one vertex:

graph generation 6

Obvious recursive construction: add one vertex at a time starting with

one vertex:

The difficulty is that isomorphic graphs appear.

graph generation 6

1st source of isomorphs: symmetry

Equivalent expansions result in isomorphic children.

graph generation 7

1st source of isomorphs: symmetry

Equivalent expansions result in isomorphic children.

graph generation 7

2nd source of isomorphs: different parents

Slightly different parents can sometimes be extended to isomorphic

children.

graph generation 8

2nd source of isomorphs: different parents

Slightly different parents can sometimes be extended to isomorphic

children.

graph generation 8

3rd source of isomorphs: pseudosimilarity

graph generation 9

3rd source of isomorphs: pseudosimilarity

graph generation 9

Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.

graph generation 10

Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.

1st source: symmetry

Rule #1: Only make extensions inequivalent under the

automorphism group of the smaller graph.

graph generation 10

Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.

1st source: symmetry

Rule #1: Only make extensions inequivalent under the

automorphism group of the smaller graph.

Perform at most one of these:

graph generation 10

2nd and 3rd sources: different expansion

This includes construction from two different parents and construction

from the same parent in two inequivalent ways.

graph generation 11

2nd and 3rd sources: different expansion

This includes construction from two different parents and construction

from the same parent in two inequivalent ways.

For each reducible graph, define a canonical equivalence class of

reductions. Here “canonical” means “independent of the labelling” and

“equivalence class” means “equivalent under the automorphism group”.

In the triangle-free graphs example, an equivalence class of reductions

is an orbit of vertices.

A canonical orbit of vertices could be the orbit that contains the vertex

labelled first by a canonical labelling program like nauty. (In practice,

we use a layered sequence of invariants to choose an equivalence class

without invoking nauty most of the time.)

graph generation 11

2nd source: different expansion (continued)

Canonical orbit of reductions:

C : graph G → orbit of reductions

C(Gγ) = C(G)γ (γ ∈ Sn)

2nd source: different expansion (continued)

Rule #2: If object G is made using expansion φ,

reject G unless φ−1 ∈ C(G).

graph generation 12

2nd source: different expansion (continued)

Canonical orbit of reductions:

C : graph G → orbit of reductions

C(Gγ) = C(G)γ (γ ∈ Sn)

2nd source: different expansion (continued)

Rule #2: If object G is made using expansion φ,

reject G unless φ−1 ∈ C(G).

Theorem (McKay, 1989): If rules #1 and #2 are obeyed,

and certain conditions hold, then all isomorphs are eliminated.

The “certain conditions” mostly involve the definition of symmetry.

graph generation 12

Application to triangle-free planar graphs

graph generation 13

Application to triangle-free planar graphs

Original

graph generation 13

Application to triangle-free planar graphs

After applying Rule 1

graph generation 13

Application to triangle-free planar graphs

After applying both rules

it becomes a tree.

graph generation 13

3-connected planar cubic graphs without triangles

All 16,747,182,732,792 such graphs on 50 vertices were generated in

about 80 days (program written with Gunnar Brinkmann).

• Suppose we want to estimate the number on 100 vertices.

• Suppose we want to estimate an average property at 100 vertices,

such as the number of 6-cycles.

graph generation 14

3-connected planar cubic graphs without triangles

All 16,747,182,732,792 such graphs on 50 vertices were generated in

about 80 days (program written with Gunnar Brinkmann).

• Suppose we want to estimate the number on 100 vertices.

• Suppose we want to estimate an average property at 100 vertices,

such as the number of 6-cycles.

The key to solving these problems is that the generation process has a

tree structure.

graph generation 14

Estimation

graph generation 15

Estimation

The nodes at the lowest level are the output graphs.

graph generation 15

Estimation

The nodes at the lowest level are the output graphs.

Assign probabilities to each edge so that the probability

of each output is the same (here p = 1/8).

1/2 1/2

1/2

1/4

1/2

1/4

1/2 1/2 1/2 1/2

graph generation 15

Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.

graph generation 16

Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.

Define

N =
1

p
(number of output graphs)

X6 =
1

p

�

output G

C6(G),

where C6(G) is the number of 6-cycles in G.

graph generation 16

Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.

Define

N =
1

p
(number of output graphs)

X6 =
1

p

�

output G

C6(G),

where C6(G) is the number of 6-cycles in G.

Then N and X6 are unbiased estimators of the total number of graphs

and the total number of 6-cycles in all the graphs. X6/N is a (biased)

estimator of the average number of 6-cycles.

graph generation 16

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Convert the groups of dots into vertices.

Note the loops and multiple edges.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Try again: Take groups of dots.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

This time the result is simple.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.

graph generation 17

But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.

Alas, this is only efficient for low degree. For higher degree, too many

attempts are required before a simple graph is obtained.

graph generation 17

Accept-reject strategy

Consider two sets and a relation between them.

A B

graph generation 18

Accept-reject strategy

Consider two sets and a relation between them.

A B

Suppose we know how to generate a random element of A.

How do we generate a random element of B?

graph generation 18

Accept-reject strategy

A B

graph generation 19

Accept-reject strategy

A Ba

1. Choose random a ∈ A.

graph generation 19

Accept-reject strategy

A Ba

1. Choose random a ∈ A.
2. Take a random edge to B.

graph generation 19

Accept-reject strategy

A Ba
b

1. Choose random a ∈ A.
2. Take a random edge to B.

3. Accept b ∈ B with probability proportional to deg(a)/ deg(b).

If unsuccessful, try again.

graph generation 19

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.

graph generation 20

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

graph generation 20

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.

graph generation 20

Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.

Using an accept-reject strategy, we can transfer uniform randomness:

G(1, 2)→ G(1, 1)→ G(1, 0)→ G(0, 0)

and then we will have a random simple graph.

graph generation 20

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

A random member of G(2, 1).

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Choose an edge in a double edge and one other.

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Swap for two other edges.

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

This strategy is efficient for moderately high degree, but not for very

high degree. Best results by Gao and Wormald.

graph generation 21

Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

This strategy is efficient for moderately high degree, but not for very

high degree. Best results by Gao and Wormald.

Nobody knows how to efficiently generate exactly uniform graphs of

specified very high degrees.

For example, regular graphs of n vertices and degree n/2.

graph generation 21

Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

graph generation 22

Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.

graph generation 22

Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.

Since the total number of pairings is easy to calculate, such ratios can

be used to find an estimate for |G(0, 0)| (the number of simple graphs).

graph generation 22

Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.

Since the total number of pairings is easy to calculate, such ratios can

be used to find an estimate for |G(0, 0)| (the number of simple graphs).

This is the most successful method for low degrees.

graph generation 22

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

If you get stuck, start over.

This happens less often than anyone can prove.

graph generation 23

Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

If you get stuck, start over.

This happens less often than anyone can prove.

Alas, the result is not uniformly random. Steger and Wormald proved

it is approximately random for low degrees.

graph generation 23

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

graph generation 24

Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

By the theory of Markov Chains, we are equally likely to be anywhere

on the graph.

graph generation 24

Random walks on graphs (continued)

graph generation 25

Random walks on graphs (continued)

If the graph is not regular,

the limiting distribution is

not uniform.

graph generation 25

Random walks on graphs (continued)

But it can be made

regular by adding loops.

graph generation 25

Application to random generation (eg. cubic graphs)

graph generation 26

Application to random generation (eg. cubic graphs)

A cubic graph.

graph generation 26

Application to random generation (eg. cubic graphs)

One switching.

graph generation 26

Application to random generation (eg. cubic graphs)

One switching.

graph generation 26

Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.

graph generation 26

Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.

This is like walking at random on a graph whose vertices are

cubic graphs.

graph generation 26

Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.

This is like walking at random on a graph whose vertices are

cubic graphs.

But different cubic graphs have different numbers of available

switchings, so this is a walk on an irregular graph.

graph generation 26

Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.

graph generation 27

Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.

If N is very large, the result is close to a uniformly random cubic graph.

graph generation 27

Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.

If N is very large, the result is close to a uniformly random cubic graph.

The rate of convergence to a uniform distribution is called the mixing

time and is very much studied.

graph generation 27

