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Exhaustive generation

Lots of people want to generate exhaustive lists of

combinatorial objects.

Tens of thousands of examples are published, involving many fields of

science.

Usually, but not always, there is a concept of equivalent objects,

and it is desired to obtain only one member of each equivalence class.

We will focus on graphs.

In 1974 it took 6 hours to generate all of the 274,668 graphs on 9

vertices (Baker, Dewdeny, Szilard). Now it takes 0.1 seconds.
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Exhaustive generation

Lots of people want to generate exhaustive lists of

combinatorial objects.

Tens of thousands of examples are published, involving many fields of

science.

Usually, but not always, there is a concept of equivalent objects,

and it is desired to obtain only one member of each equivalence class.

We will focus on graphs.

In 1974 it took 6 hours to generate all of the 274,668 graphs on 9

vertices (Baker, Dewdeny, Szilard). Now it takes 0.1 seconds.

It is practical to generate all 50,502,031,367,952 graphs on 13 ver-

tices and plausible to generate all 29,054,155,657,235,488 graphs on

14 vertices.
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Recursive generation

A recursive construction of a class of graphs consists of

1. a set of irreducible graphs in the class, and

2. a set of expansions that can be performed on graphs in the class,

such that each graph in the class can be constructed from an irreducible

graph via a sequence of expansions while staying within the class.

The reverse of an expansion is a reduction.
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Recursive generation

A recursive construction of a class of graphs consists of

1. a set of irreducible graphs in the class, and

2. a set of expansions that can be performed on graphs in the class,

such that each graph in the class can be constructed from an irreducible

graph via a sequence of expansions while staying within the class.

The reverse of an expansion is a reduction.

Example: 3-connected planar cubic graphs

face
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Example: 3-connected planar cubic graphs without triangles

The following generation method is a slight improvement on one

discovered by Batagelj (1989).

> 5
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Isomorph-free generation

Once we have a recursive characterization, we can generate the graphs

in the class, but how to we eliminate isomorphic copies?
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Isomorph-free generation

Once we have a recursive characterization, we can generate the graphs

in the class, but how to we eliminate isomorphic copies?

Toy Example: triangle-free planar graphs
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Obvious recursive construction: add one vertex at a time starting with

one vertex:
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Obvious recursive construction: add one vertex at a time starting with

one vertex:

The difficulty is that isomorphic graphs appear.
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1st source of isomorphs: symmetry

Equivalent expansions result in isomorphic children.
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1st source of isomorphs: symmetry

Equivalent expansions result in isomorphic children.
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2nd source of isomorphs: different parents

Slightly different parents can sometimes be extended to isomorphic

children.
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2nd source of isomorphs: different parents

Slightly different parents can sometimes be extended to isomorphic

children.
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3rd source of isomorphs: pseudosimilarity
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3rd source of isomorphs: pseudosimilarity
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Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.
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Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.

1st source: symmetry

Rule #1: Only make extensions inequivalent under the

automorphism group of the smaller graph.
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Generation by Canonical Construction Path

Also called canonical augmentation. McKay (1998)

Here we attempt to counter the three sources of isomorphs directly.

1st source: symmetry

Rule #1: Only make extensions inequivalent under the

automorphism group of the smaller graph.

Perform at most one of these:
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2nd and 3rd sources: different expansion

This includes construction from two different parents and construction

from the same parent in two inequivalent ways.
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2nd and 3rd sources: different expansion

This includes construction from two different parents and construction

from the same parent in two inequivalent ways.

For each reducible graph, define a canonical equivalence class of

reductions. Here “canonical” means “independent of the labelling” and

“equivalence class” means “equivalent under the automorphism group”.

In the triangle-free graphs example, an equivalence class of reductions

is an orbit of vertices.

A canonical orbit of vertices could be the orbit that contains the vertex

labelled first by a canonical labelling program like nauty. (In practice,

we use a layered sequence of invariants to choose an equivalence class

without invoking nauty most of the time.)
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2nd source: different expansion (continued)

Canonical orbit of reductions:

C : graph G → orbit of reductions

C(Gγ) = C(G)γ (γ ∈ Sn)

2nd source: different expansion (continued)

Rule #2: If object G is made using expansion φ,

reject G unless φ−1 ∈ C(G).
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2nd source: different expansion (continued)

Canonical orbit of reductions:

C : graph G → orbit of reductions

C(Gγ) = C(G)γ (γ ∈ Sn)

2nd source: different expansion (continued)

Rule #2: If object G is made using expansion φ,

reject G unless φ−1 ∈ C(G).

Theorem (McKay, 1989): If rules #1 and #2 are obeyed,

and certain conditions hold, then all isomorphs are eliminated.

The “certain conditions” mostly involve the definition of symmetry.
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Application to triangle-free planar graphs
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Application to triangle-free planar graphs

Original
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Application to triangle-free planar graphs

After applying Rule 1
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Application to triangle-free planar graphs

After applying both rules

it becomes a tree.
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3-connected planar cubic graphs without triangles

All 16,747,182,732,792 such graphs on 50 vertices were generated in

about 80 days (program written with Gunnar Brinkmann).

• Suppose we want to estimate the number on 100 vertices.

• Suppose we want to estimate an average property at 100 vertices,

such as the number of 6-cycles.
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3-connected planar cubic graphs without triangles

All 16,747,182,732,792 such graphs on 50 vertices were generated in

about 80 days (program written with Gunnar Brinkmann).

• Suppose we want to estimate the number on 100 vertices.

• Suppose we want to estimate an average property at 100 vertices,

such as the number of 6-cycles.

The key to solving these problems is that the generation process has a

tree structure.
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Estimation
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Estimation

The nodes at the lowest level are the output graphs.
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Estimation

The nodes at the lowest level are the output graphs.

Assign probabilities to each edge so that the probability

of each output is the same (here p = 1/8).

1/2 1/2

1/2

1/4

1/2

1/4

1/2 1/2 1/2 1/2
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Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.
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Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.

Define

N =
1

p
(number of output graphs)

X6 =
1

p

�

output G

C6(G),

where C6(G) is the number of 6-cycles in G.
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Estimation (continued)

Run the generation to completion, taking each branch with the

probability assigned to that branch.

Let p be the probability that each graph in the class appears

in the output. By design, p is constant.

Define

N =
1

p
(number of output graphs)

X6 =
1

p

�

output G

C6(G),

where C6(G) is the number of 6-cycles in G.

Then N and X6 are unbiased estimators of the total number of graphs

and the total number of 6-cycles in all the graphs. X6/N is a (biased)

estimator of the average number of 6-cycles.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Convert the groups of dots into vertices.

Note the loops and multiple edges.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Try again: Take groups of dots.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

This time the result is simple.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.
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But, how to make one graph uniformly at random?

Example: Simple graphs with degrees 4,3,3,4,3,3,3,3

The key observation is that every simple graph with the

given degree sequence is equally likely to be generated.

Alas, this is only efficient for low degree. For higher degree, too many

attempts are required before a simple graph is obtained.
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Accept-reject strategy

Consider two sets and a relation between them.

A B
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Accept-reject strategy

Consider two sets and a relation between them.

A B

Suppose we know how to generate a random element of A.

How do we generate a random element of B?
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Accept-reject strategy

A B
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Accept-reject strategy

A Ba

1. Choose random a ∈ A.
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Accept-reject strategy

A Ba

1. Choose random a ∈ A.
2. Take a random edge to B.
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Accept-reject strategy

A Ba
b

1. Choose random a ∈ A.
2. Take a random edge to B.

3. Accept b ∈ B with probability proportional to deg(a)/ deg(b).

If unsuccessful, try again.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Take groups of dots according to the required degrees.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.
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Back to simple graphs with degrees 4,3,3,4,3,3,3,3

Pair them at random.

Let’s call this a random member of G(1, 2) because it has 1 loop and

2 double edges.

Using an accept-reject strategy, we can transfer uniform randomness:

G(1, 2)→ G(1, 1)→ G(1, 0)→ G(0, 0)

and then we will have a random simple graph.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

A random member of G(2, 1).
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Choose an edge in a double edge and one other.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Swap for two other edges.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

This strategy is efficient for moderately high degree, but not for very

high degree. Best results by Gao and Wormald.
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Simple graphs with degrees 4,3,3,4,3,3,3,3 (continued)

Possibly accept to get a member of G(1, 1).

This strategy is efficient for moderately high degree, but not for very

high degree. Best results by Gao and Wormald.

Nobody knows how to efficiently generate exactly uniform graphs of

specified very high degrees.

For example, regular graphs of n vertices and degree n/2.
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Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.
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Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.
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Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.

Since the total number of pairings is easy to calculate, such ratios can

be used to find an estimate for |G(0, 0)| (the number of simple graphs).
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Switchings applied to approximate counting

A small modification such as replacing two edges by two others is called

a switching.

If N1 is the average number of ways to switch a member of G(2, 1) to

a member of G(1, 1), and

N2 is the average number of ways to switch a member of G(1, 1) to a

member of G(2, 1), then

|G(1, 1)|
|G(2, 1)| =

N1

N2

.

Since the total number of pairings is easy to calculate, such ratios can

be used to find an estimate for |G(0, 0)| (the number of simple graphs).

This is the most successful method for low degrees.
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at
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Approximately uniform random generation — the d-model
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

If you get stuck, start over.

This happens less often than anyone can prove.
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Approximately uniform random generation — the d-model

Instead of choosing a random pairing, choose one pair at a time at

random from the available legal pairs.

If you get stuck, start over.

This happens less often than anyone can prove.

Alas, the result is not uniformly random. Steger and Wormald proved

it is approximately random for low degrees.
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Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.
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Random walks on graphs
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Start anywhere and walk at random for a long time.
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Random walks on graphs
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Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.
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Random walks on graphs

Suppose we have a connected regular graph with at least one cycle of

odd length.

Start anywhere and walk at random for a long time.

By the theory of Markov Chains, we are equally likely to be anywhere

on the graph.
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Random walks on graphs (continued)
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Random walks on graphs (continued)

If the graph is not regular,

the limiting distribution is

not uniform.
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Random walks on graphs (continued)

But it can be made

regular by adding loops.
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Application to random generation (eg. cubic graphs)
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Application to random generation (eg. cubic graphs)

A cubic graph.
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Application to random generation (eg. cubic graphs)

One switching.
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Application to random generation (eg. cubic graphs)

One switching.
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Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.
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Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.

This is like walking at random on a graph whose vertices are

cubic graphs.
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Application to random generation (eg. cubic graphs)

One switching.

Start with any cubic graph and do switchings in random places.

This is like walking at random on a graph whose vertices are

cubic graphs.

But different cubic graphs have different numbers of available

switchings, so this is a walk on an irregular graph.
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Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.
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Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.

If N is very large, the result is close to a uniformly random cubic graph.
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Markov chain for cubic graphs

• Choose any cubic graph.

• Choose a large number N.

• Do this N times:

– Randomly select edges v1v2 and w1w2.

– If v1v2, w1w2 −→ v1w1, v2w2 is a valid switching,

then perform it. If not, do nothing.

If N is very large, the result is close to a uniformly random cubic graph.

The rate of convergence to a uniform distribution is called the mixing

time and is very much studied.
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